视觉SLAM的方案大全

Crq
Crq
管理员
1870
文章
0
粉丝
Linux教程评论47字数 917阅读3分3秒阅读模式
MoNoSLAM

以扩展卡尔曼滤波为后端,追踪前端非常稀疏的特征点,以相机的当前状态和所有路标点为状态量,更新其均值和协方差。

优点:在2007年,随着计算机性能的提升,以及该系统用稀疏的方式处理图像,使得该方案使得SLAM系统能够在线运行。(之前的SLAM系统是基本不能在线运行的,只能靠机器人携带相机采集的数据,再离线进行定位和建图。)

缺点:MoNoSLAM存在应用场景窄,路标数量有限,系数特征点非常容易丢失等缺点,现在已经停止了对其开发。

PTAM( Parallel Tracking And Mapping )

主要原理是: 从摄影图像上捕捉特征点,然后检测出平面,在检测出的平面上建立虚拟的3D坐标,然后合成摄影图像和CG。其中,独特之处在于,立体平面的检测和图像的合成采用并行处理。

优点:提出并实现了跟踪与建图过程的并行化,将前后端分离,使用非线性优化方案,既可以实时的定位与建图,也可以在虚拟平面上叠加物体。

缺点:场景小,跟踪容易丢失。

ORB-SLAM(继承并改进PTAM)

优点:泛用性:支持单目,双目,RGB-D三种模式。整个系统围绕ORB特征进行计算,在效率与精度之间做到了平衡,并围绕特征点进行了优化。其回环检测算法可以有效地防止误差的积累。使用三个线程完成SLAM,取得了较好的跟踪和建图效果,能够保证轨迹和地图的全局一致性。

缺点:对于每幅图像都需要计算ORB特征耗时大。三线程给CPU带来较大负担,在一直到嵌入式设备上有一定的困难,ORB-SLAM的建图为稀疏特征点,只能满足定位功能。

LSD-SLAM(Large Scale Direct monocular SLAM)

将单目直接发应用到了半稠密的单目SLAM中,不需要计算特征点,还能构建版稠密地图.

优点:直接法是针对像素进行的;对特征缺失区域不敏感,半稠密追踪可以保证追踪的实时性和稳定性;在cpu上实现了半稠密地图的重建。

缺点:对相机内参和曝光非常敏感,并且在相机快速运动时容易丢失,在回环检测部分,没有直接基于直接发实现,依赖特征点方程进行回环检测,尚未完全摆脱特征点的计算。

SVO( Semi-direct Visual Odoemtry )

基于稀疏直接法的视觉里程计,在实现中,使用了4x4的小块进行块匹配,估计相机资自身的运动。

优点:速度极快,在低端计算平台上也能达到实时性,适合计算平台受限的场合。

缺点:在平视相机中表现不佳;舍弃了后端优化和回环检测部分,SVO的位姿估计存在累计误差,并且丢失后不太容易进行重定位。

RTAB-MAP(RGB-D传感器上的SLAM方案)

给出了一套完整的RGB-D SLAM方案,目前可以直接从ROS中获得其二进制程序,在Google Project Tango上可以获得其APP直接使用。

优点:原理简单;支持RGB-D和双目传感器,且提供实时的定位和建图功能。

缺点:集成度高,庞大,在其上进行二次开发困难,适合作为SLAM应用而非研究使用。

weinxin
我的微信
微信号已复制
我的微信
这是我的微信扫一扫
 
Crq
  • 本文由 Crq 发表于2024年9月27日 14:07:06
  • 转载请注明:https://www.cncrq.com/10922.html
最牛X的GCC 内联汇编 Linux教程

最牛X的GCC 内联汇编

正如大家知道的,在C语言中插入汇编语言,其是Linux中使用的基本汇编程序语法。本文将讲解 GCC 提供的内联汇编特性的用途和用法。对于阅读这篇文章,这里只有两个前提要求,很明显,...
10款优秀Vim插件帮你打造完美IDE Linux教程

10款优秀Vim插件帮你打造完美IDE

如果你稍微写过一点代码,就能知道“集成开发环境”(IDE)是多么的便利。不管是Java、C还是Python,当IDE会帮你检查语法、后台编译,或者自动导入你需要的库时,写代码就变得...
匿名

发表评论

匿名网友
:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:
确定

拖动滑块以完成验证