深层神经网络被用来执行复杂的机器学习任务,例如图像识别、手写识别、自然语言处理、聊天机器人等等。这些神经网络被训练学习其所要执行的任务。由于训练所需的计算是非常巨大的,在大多数情况下需要 GPU 支持,这时 TensorFlow 就派上用场了。启用了 GPU 并安装了支持 GPU 的软件,那么训练所需的时间就可以大大减少。
本教程可以帮助你安装只支持 CPU 的和同时支持 GPU 的 TensorFlow。要使用带有 GPU 支持的 TensorFLow,你必须要有一块支持 CUDA 的 Nvidia GPU。CUDA 和 CuDNN(Nvidia 的计算库)的安装有点棘手,本指南会提供在实际安装 TensorFlow 之前一步步安装它们的方法。
Nvidia CUDA 是一个 GPU 加速库,它已经为标准神经网络中用到的标准例程调优过。CuDNN 是一个用于 GPU 的调优库,它负责 GPU 性能的自动调整。TensorFlow 同时依赖这两者用于训练并运行深层神经网络,因此它们必须在 TensorFlow 之前安装。
需要指出的是,那些不希望安装支持 GPU 的 TensorFlow 的人,你可以跳过以下所有的步骤并直接跳到:“步骤 5:安装只支持 CPU 的 TensorFlow”。
关于 TensorFlow 的介绍可以在这里找到。
首先,在这里下载用于 Ubuntu 16.04 的 CUDA 库。此文件非常大(2GB),因此也许会花费一些时间下载。
下载的文件是 “.deb” 包。要安装它,运行下面的命令:
sudo dpkg -i cuda-repo-ubuntu1604-8-0-local_8.0.44-1_amd64.deb
下面的的命令会安装所有的依赖,并最后安装 cuda 工具包:
sudo apt install -f sudo apt update sudo apt install cuda
如果成功安装,你会看到一条消息说:“successfully installed”。如果已经安装了,接着你可以看到类似下面的输出:
CuDNN 下载需要花费一些功夫。Nvidia 没有直接提供下载文件(虽然它是免费的)。通过下面的步骤获取 CuDNN。
- 点击此处进入 Nvidia 的注册页面并创建一个帐户。第一页要求你输入你的个人资料,第二页会要求你回答几个调查问题。如果你不知道所有答案也没问题,你可以随便选择一个选项。
- 通过前面的步骤,Nvidia 会向你的邮箱发送一个激活链接。在你激活之后,直接进入这里的 CuDNN 下载链接。
- 登录之后,你需要填写另外一份类似的调查。随机勾选复选框,然后点击调查底部的 “proceed to Download”,在下一页我们点击同意使用条款。
- 最后,在下拉中点击 “Download cuDNN v5.1 (Jan 20, 2017), for CUDA 8.0”,最后,你需要下载这两个文件:
- cuDNN v5.1 Runtime Library for Ubuntu14.04 (Deb)
- cuDNN v5.1 Developer Library for Ubuntu14.04 (Deb)
注意:即使上面说的是用于 Ubuntu 14.04 的库。它也适用于 16.04。
现在你已经同时有 CuDNN 的两个文件了,是时候安装它们了!在包含这些文件的文件夹内运行下面的命令:
sudo dpkg -i libcudnn5_5.1.5-1+cuda8.0_amd64.deb sudo dpkg -i libcudnn5-dev_5.1.5-1+cuda8.0_amd64.deb
下面的图片展示了这些命令的输出:
安装位置应该被添加到 bashrc 文件中,以便系统下一次知道如何找到这些用于 CUDA 的文件。使用下面的命令打开 bashrc 文件:
sudo gedit ~/.bashrc
文件打开后,添加下面两行到文件的末尾:
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64" export CUDA_HOME=/usr/local/cuda
这步我们将安装带有 GPU 支持的 TensorFlow。如果你使用的是 Python 2.7,运行下面的命令:
pip install TensorFlow-gpu
如果安装了 Python 3.x,使用下面的命令:
pip3 install TensorFlow-gpu
安装完后,你会看到一条 “successfully installed” 的消息。现在,剩下要测试的是是否已经正确安装。打开终端并输入下面的命令测试:
python import TensorFlow as tf
你应该会看到类似下面图片的输出。在图片中你可以观察到 CUDA 库已经成功打开了。如果有任何错误,消息会提示说无法打开 CUDA 甚至无法找到模块。为防你或许遗漏了上面的某步,仔细重做教程的每一步就行了。
注意:这步是对那些没有 GPU 或者没有 Nvidia GPU 的人而言的。其他人请忽略这步!!
安装只支持 CPU 的 TensorFlow 非常简单。使用下面两个命令:
pip install TensorFlow
如果你有 python 3.x,使用下面的命令:
pip3 install TensorFlow
是的,就是这么简单!
安装指南至此结束,你现在可以开始构建深度学习应用了。
via: https://www.howtoforge.com/tutorial/installing-tensorflow-neural-network-software-for-cpu-and-gpu-on-ubuntu-16-04/
作者:Akshay Pai 译者:geekpi 校对:wxy
本文由 LCTT 原创编译,Linux中国 荣誉推出
评论